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Abstract
We investigate phonon-assisted mechanisms which contribute to the decoherence of excitonic
qubits in quantum dot systems coupled by a Förster-type transfer process. Using the Fermi
Golden Rule, we derive explicit expressions for the relaxation and dephasing times for excitonic
qubits interacting with acoustic phonons via both the deformation potential and piezoelectric
coupling. The decoherence times computed using the Fermi Golden Rule are consistent with
those estimated using Bloch–Redfield theory at interdot tunnelling energies small enough for
Markovian theories to be valid. Our results show that renormalization of interdot tunnelling
frequencies due to phonon interactions is influenced mainly by bias and lattice temperature in
GaAs/AlGaAs quantum dot systems.

1. Introduction

Excitons (electron–hole correlated states) in quantum dots
are of interest in the solid-state implementation of quantum
logic gates [1–4]. Significant advances in creating and
probing excitonic states in quantum dots [5, 6] and newly
developed techniques, which allow quantum coupling between
excitonic states to be continuously varied by external electric
fields [4], have provided rapid progress in the field of solid-
state quantum computation. For the case of two coupled
quantum dot systems, exciton–exciton dipole interactions give
rise to diagonal terms which allow quantum logic to be
performed via ultra-fast laser pulses on time scales less than
the calculated decoherence times [2]. Related studies [7–9]
have demonstrated the importance of Förster energy transfers
in producing entangled excitonic states, and of using external
electric fields to achieve critical logic gate actions. Dipole–
dipole interactions were first proposed by Förster [10] and
further extended by Dexter [11] as a mechanism of energy
transfer for non-overlapping excitonic wavefunctions localized
at different lattice sites.

Decoherence due to environmental factors such as
phonons and impurities is inevitable and is a major drawback
in solid-state devices. Several strategies such as decoherence-
free subspaces [12], optimal control techniques [13] and
immunization processes [14] have been proposed to counter
the detrimental effects of decoherence. It is not immediately
clear, however, whether these proposals invoke other routes
which facilitate decoherence and, if so, the role played by

various system parameters in minimizing errors during logic
gate operations. Hence, there is a need to scrutinize the various
intrinsic processes, and in particular those that are phonon
induced in order to achieve fault tolerant quantum switches.

The interaction of charge carriers with acoustic phonons
arises mainly from the deformation potential and piezoelectric
coupling in quantum dots [15]. Theoretical estimates by
Fedichkin et al [16] show that the error rate due to acoustic
phonons may be a major factor limiting qubit performance, in
agreement with experimental results [17] for a qubit system
implemented using a double-dot GaAs/AlGaAs system with a
two-dimensional electron gas. Electron–phonon interactions,
leading to the formation of polarons [18], are significant in
GaAs/InAs quantum dots as compared to bulk systems of the
same material. In recent work, Vorojtsov et al [20] have
studied the role of piezoelectric phonons in qubit systems but
without including the Förster coupling mechanism or excitonic
interactions. Here we extend the Markovian Bloch–Redfield
theory [19], used in [20], to excitonic qubits interacting
with acoustic phonons via both the deformation potential and
piezoelectric coupling. In order to obtain explicit results,
we consider the specific case of excitonic qubits in Förster
coupled quantum dots [8]. Earlier work [9] has examined the
coupling of the Förster coupled quantum dot system to the
external environment consisting of a single radiation mode and
associated spontaneous emission and decay processes.

It is not immediately clear whether decoherence phenom-
ena are dominated by relaxation or by pure dephasing pro-
cesses, and the extent to which the outcome is affected by the
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nature of qubit–phonon coupling during a cycle of logic gate
operations. There is a subtle difference between relaxation and
pure dephasing of entangled systems. While relaxation leads to
shifts in the population of qubit states with one state favoured
over another, pure dephasing results in changes in the energy
difference between qubit states with the population of qubit
states remaining intact. While both processes lead to deco-
herence of the entangled system, we investigate here the vari-
ous parameters affecting these two inherent sources of dissipa-
tion. We employ the Fermi Golden Rule as well as Markovian
Bloch–Redfield theory which provides analytical expressions
for the dephasing and relaxation rates [19]. By comparison
of decoherence times between the two methods, we study the
range of system parameters for which the Fermi Golden Rule
yields reliable results for relaxation and pure dephasing times
in GaAs/AlGaAs quantum dot systems.

The paper is organized as follows. In section 2 we
introduce the model of excitonic qubits in quantum dots and in
section 3 derive the explicit expression for the interdot Förster
tunnelling amplitude F . In section 4 we examine the different
processes that lead to pure dephasing and relaxation of qubit
systems interacting with phonons and in section 5 we evaluate
matrix elements associated with qubit–phonon interactions via
both the deformation potential and piezoelectric coupling. We
obtain explicit expressions for the relaxation and dephasing
times for excitonic qubits interacting with acoustic phonons
in section 6 and provide numerical results for the case of the
GaAs/AlGaAs material system. In section 7, we compare
results obtained via the Fermi Golden Rule with those of the
Markovian Bloch–Redfield theory, followed by conclusions in
section 8.

2. Excitonic qubits in quantum dots

We consider two excitons in their ground states in adjacent
coupled quantum dots located at Ra and Rb. We assume
the quantum dots to be shaped in the form of either cuboid
boxes or quasi-two-dimensional disks in which the vertical
confinement energies of charge carriers are larger than their
lateral confinement energies. We label the localized excitonic
states as |Ra〉 and |Rb〉. In the notation of our earlier
work [21], we represent |Ra〉 according to

|Ra〉 = ν0

L

∑

re,rh

�(Ra, re‖, rh‖, ze, zh) a†
c,re

av,rh
|0〉, (1)

where ν0 is the volume of the unit cell, L is the quantization
length and a†

c,re
(av,rh

) is the creation (annihilation) operator
of an electron in the conduction (valence) band, denoted by
c (v). |0〉 denotes the electronic state of the quantum dot
in which all electronic ground states are occupied and all
excited states are unoccupied. For simplicity we ignore spin
effects, as exchange interactions due to singlet excitons are
generally very small [22]. The position vectors re and rh may
be decomposed into components parallel and perpendicular to
the lateral direction of the quantum dot according to re =
(re‖, ze) and rh = (rh‖, zh). The vertical confinement energies
of charge carriers are assumed to be larger than the lateral

confinement energies, and therefore we may factorize the
exciton wavefunction � according to

�(Ra, re‖, rh‖, ze, zh) = �(Ra, re‖, rh‖)ϕe(ze)ϕh(zh), (2)

where ϕe(ze) (ϕh(zh)) is the envelope function of the electron
(hole) in the vertical direction of the quantum dot. The form
of the in-plane exciton wavefunction �(Ra, re‖, rh‖) at Ra

depends on the degree of confinement of the electron–hole
within the quantum dot. We consider a strong individual charge
carrier regime in which the kinetic motions of the electrons
and holes are quantized separately, so that the resulting discrete
energy levels are affected by the Coulomb interaction between
the electron and hole by only a small amount, of the order �−1

where � is the quantum dot radius.
�(Ra, re‖, rh‖) may be further factorized by the

following change of coordinates:

r‖ = 1

�r
(re‖ − rh‖), R = 1

�2
r

(�2
h re‖ − �2

e rh‖),

where �r =
√
�e

2 + �h
2. The effective lengths �e and �h are

related to the respective electron and hole effective masses and

confining potential frequencies ωe
0 and ωh

0 by �e =
√

h̄
meω

e
0

and �h =
√

h̄
mhω

h
0
. We may now write � in the factorized

form�(Ra, re‖, rh‖) = �(R,Ra) ψ(r‖)where the confining
potential in the lateral direction is modelled using harmonic
potentials, so that ψ,� take the form:

ψ(r‖) = 1√
π�r

exp

(
− r 2

‖
2�r

2

)
,

�(R,Ra) = 1√
πL R

exp

(
− 1

2L R
2
|R‖ − Ra|2

) (3)

where L R = �e�h/�r . The length scales �e and �h associated
with the harmonic potential are smaller than the effective Bohr
radius of the exciton due to strong confinement of charge
carriers in the quantum dot. Due to the Gaussian form of �
we can obtain an explicit expression for the two-dimensional
Fourier transform �̃:

�(R,Ra) =
∫

d2q‖ exp(iq‖ · R) �̃(q‖,Ra),

�̃(q‖,Ra) = L R

2π
√
π

exp

(
−iq‖ · Ra − 1

2
L R

2q2
‖

)
.

(4)

The confining potential in the vertical direction is
modelled using harmonic potentials defined by the vertical
confinement dimensions �ze and �zh for electrons and holes
respectively, leading to the wavefunctions:

ϕe(ze) =
(

1√
π�ze

)1/2

exp

(
− z2

e

2�ze
2

)
,

ϕh(zh) =
(

1√
π�zh

)1/2

exp

(
− z2

h

2�zh
2

)
.

(5)

The excitonic state |Rb〉 is analogous in form to equation (1).
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We code the excitonic qubits states using the relative
position of the exciton via the basis set {|L〉, |R〉}:

|L〉 = |Ra〉 ⊗ |0〉b, |R〉 = |0〉a ⊗ |Rb〉, (6)

where the states |0〉a and |0〉b, which correspond to the
absence of excitons, denote the respective ground states of the
quantum dots at |Ra〉 and |Rb〉. We simplify this approach
by considering a two-level system involving only the states
|L〉 and |R〉, and work in the limit of a pure Förster coupling.
The direct Coulomb interaction, which causes the formation of
the biexciton state |Ra〉|Rb〉, is neglected and we also exclude
the possibility of entangled states involving the vacuum state
|0〉a|0〉b. The two-level excitonic qubit Hamiltonian takes the
form

Ĥex−qb = −h̄

(
��

2
σz + F σx

)
, (7)

where the Pauli matrices are given by σx = |L〉〈R| + |R〉〈L|
and σz = |L〉〈L| − |R〉〈R|, and �� = �a −�b denotes the
difference in exciton creation energy between the quantum dot
at Ra and that at Rb and can be regarded as the biasing energy.
F denotes the interdot Förster tunnelling amplitude responsible
for the transfer of an exciton from one quantum dot to the other
without involving a physical tunnelling process.

The symmetric and antisymmetric eigenstates of this
interacting qubit system are given by

|χs〉 = cos
β

2
|L〉 + sin

β

2
|R〉

|χas〉 = sin
β

2
|L〉 − cos

β

2
|R〉,

(8)

with corresponding energies

Eas(s) = �0 +�a − ��

2
±

√(
��

2

)2

+ F2, (9)

where �0 denotes the ground state energy of the system in
which each quantum dot is unoccupied by excitons. The
energy difference between the eigenstates is

√
��2 + (2F)2

and can be studied as a function of time. In the absence of any
decoherence, the excitonic qubit oscillates coherently between
the two dots with the Rabi frequency Eas − Es. The polar angle
β in the Bloch sphere representation of a qubit is related to��
and F by tan β = 2F

��
.

3. Interdot Förster tunnelling amplitude F

The concept of Förster resonance energy transfer has
been applied successfully to the description of nonradiative
transitions in quantum dot systems and has been shown to
be reliable when applied to semiconductor nanocrystals [23].
When the distance between two quantum dots is larger than
the quantum dot sizes and the excitons are well localized, the
electronic states of the quantum dots become coupled by long-
range Coulomb interactions.

The magnitude of the interdot Förster tunnelling
amplitude F is determined from (Dexter [11]):

F = 〈R|ĤF|L〉
=

∑

ra ,rb

〈g,Ra; f,Rb|U(|ra − rb|)| f,Ra; g,Rb〉

+
∑

ra ,rb

〈g,Ra; f,Rb|U(|ra − rb|)|g,Rb; f,Ra〉, (10)

where the Förster Hamiltonian ĤF, which is included in the
Hamiltonian Ĥex−qb in equation (7), is given by

ĤF = −h̄ F σx , (11)

and U(|ra − rb|) = e2/(ε |ra − rb|), where ra and rb are
the position vectors of the charge carriers with origins at the
centre of the quantum dots located at Ra and Rb respectively.
The background dielectric constant is ε = ε0 εr where the
relative permittivity εr is assumed to be independent of the
location of charge carriers. We assume that an incident photon
of appropriate energy excites the electronic state of the crystal
such that an electron is excited in the electronic state f and a
hole is excited in the ground state g. Therefore f and g denote
the respective energy levels of the electron and hole with
respect to the ground state of the crystal where the valence band
is completely occupied and the conduction band is unoccupied.
In the two-particle interaction matrix element

〈g,Ra; f,Rb|U(|ra − rb|)| f,Ra; g,Rb〉,

the states to the right of the scattering potential U represent
the initial states while those to the left represent the final
scattered states. The first matrix element on the right-hand
side of equation (10) is due to the Coulomb interaction in
which the excited electron, in its initial state f in the quantum
dot at Ra, and a hole in the state g in the quantum dot at
Rb, are scattered through the potential U to final states in
which the electron and hole remain in the same excited states
but with exchanged positions. The net effect can be viewed
as a tunnelling process in which the exciton is physically
transferred from one quantum dot to another. The second
matrix element in equation (10) represents the scattering of an
electron, in its initial state f in the quantum dot at Ra , and
a hole in the state g in the quantum dot at Rb, through the
potential U such that they remain at their respective quantum
dot sites but with exchanged excited states. This second
process can be viewed as one in which the excited electron
in one quantum dot recombines with the hole in the ground
state, and the liberated energy is then transferred to excite
the electron–hole pair in a neighbouring quantum dot. We
assume that the quantum dots are separated by a distance
W = |Ra − Rb| such that W � |ra − rb|, so that
tunnelling effects are negligible. The interdot Förster energy
transfer is then determined by the second matrix element in
equation (10).

By substituting the expressions for |Ra〉 and |Rb〉 (given
by equation (1)) into equation (10) and by employing the
Förster multipole expansion of the Coulomb interaction we

3
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obtain:

〈R|ĤF|L〉 = ν2
0

4πε|Ra − Rb|3
×

∑

re,rh

∑

r′
e,r

′
h

�(Ra, re‖, rh‖)�∗(Rb, r
′
e‖, r

′
h‖)

× ϕe(ze) ϕh(zh) ϕ
∗
e (z

′
e) ϕ

∗
h (z

′
h)

× [
µa ·µb − 3(µa · Rd)(µb ·Rd)

]
δre,rh δr′

e,r
′
h
, (12)

where Rd = Ra−Rb
|Ra−Rb | , and

µa(b) =
∫

uc(r) (ra(b) − r) uv(r) dr, (13)

where uc(r) and uv(r) are the respective periodic components
of the bulk Bloch functions of the electron and hole. We
assume that the Bloch functions are identical in both the
quantum dot and barrier materials.

Using equations (3)–(5) in equation (12), we obtain:

F(W ) = 〈R|ĤF|L〉
=

√
11

8

µ ·µ
εW 3

(
2�e�h

�e
2 + �h

2

)2 (
2�ze�zh

�ze
2 + �zh

2

)
, (14)

where µ = µa 
 µb and W = |Ra − Rb|. From equation (8)
we obtain

〈χs|ĤF |χs〉 = −〈χas|ĤF |χas〉 = sinβ F(W ),

〈χas|ĤF |χs〉 = − cos β F(W ).
(15)

In view of the fact that F gives rise to the entangled states
|χs〉 and |χas〉, we expect the inevitable loss of energy to
lattice vibrations coupled with the excitation transfer to lead
to decoherence and subsequent degradation of qubit states. We
investigate this important process in greater detail in the next
section.

4. Excitonic qubit–phonon interaction

We consider the exciton state at each quantum dot to be
coupled to a continuum of acoustic phonons via both the
deformation potential and piezoelectric coupling. The acoustic
phonons are modelled as bulk modes which is a valid
approximation for quantum dots fabricated in barrier materials
with similar lattice properties, such as (In,Ga)As quantum dots
with a (Ga, Al)As barrier. The total Hamiltonian Ĥ env

qb of
a system of Förster coupled quantum dots interacting with
phonons is given by

Ĥ env
qb = Ĥex−qb + Ĥ ph + Ĥ DP

ex−qb + Ĥ Piez
ex−qb,λ + Ĥ ph

F , (16)

each term of which we now explain in turn. Ĥex−qb is given by
equation (7), Ĥ ph denotes the Hamiltonian for the phonon bath

Ĥph =
∑

q

h̄ω
q,λ

b†
λ(q)bλ(q), (17)

where b†
λ(q), and bλ(q), are the respective creation and

annihilation operators of a λ-mode phonon with wavevector q.
The λ-mode is denoted LA for longitudinal acoustic phonons

and TA for transverse acoustic phonons. The acoustic phonon
energy spectrum is determined by the dispersion relation
ω

q,LA = υLA |q| for the longitudinal mode and ω
q,TA = υTA |q|

for the transverse mode, with υLA and υTA denoting the
corresponding sound velocities.

Ĥ DP
ex−qb denotes the Hamiltonian describing the qubit–

phonon interaction via the deformation potential coupling
and is linear in terms of phonon creation and annihilation
operators:

Ĥ DP
ex−qb =

∑

λ,q

√
h̄|q|2

2ρ V ωq,λ

[
Mr σx + Mp σz

]

×
(

b†
λ(−q)+ bλ(q)

)
|nq,λ〉〈nq,λ|, (18)

where |nq,λ〉 denotes the occupation number of a λ-mode
phonon with wavevector q. V is the crystal volume and
ρ is the mass density of the material system. Dc and Dv

are the respective deformation potential constants for the
conduction and valence bands. The terms Mr and Mp have the
expressions

Mr = 〈χas; nq,λ ± 1| (Dcei q·re − Dvei q·rh
) |χs; nq,λ〉,

Mp = 〈χs; nq,λ ± 1| (Dcei q·re − Dvei q·rh
) |χs; nq,λ〉

− 〈χas; nq,λ ± 1| (Dcei q·re − Dvei q·rh
) |χas; nq,λ〉.

The term involving Mr in the Hamiltonian describes
decoherence in which the qubit state |χs〉 relaxes to the
state |χas〉 due to mediation by phonons. During this
process, phonons disrupt the coherent oscillation between
antisymmetric and symmetric states as absorption of phonons
elevates the symmetric state to an antisymmetric state of higher
energy. The Mp term describes a second type of decoherence
in which a shift occurs in the energy difference between the
two qubit states resulting in pure dephasing of the entangled
system.

An expression similar to equation (18) can be obtained
for the Hamiltonian Ĥ Piez

ex−qb,λ describing exciton–phonon
interactions via piezoelectric coupling:

Ĥ Piez
ex−qb,λ =

∑

λ,q

8πee14

ε0εr|q|2
√

h̄

2ρ V ωq,λ

× (
ξx,λqyqz + ξy,λqxqz + ξz,λqxqy

)

× [
Nr σx + Np σz

] (
b†
λ(−q)+ bλ(q)

)
|nq,λ〉〈nq,λ|, (19)

where the relative permittivity εr is assumed to be unaffected
by the contribution from strain fields associated with acoustic
phonon modes. e14 denotes the piezoelectric constant and
ξi,λ is the unit vector of polarization of the λ-phonon along
the i -direction. Excitonic interactions with phonons due to
piezoelectric coupling are highly anisotropic in nature [21] and
the form of Ĥ Piez

ex−qb,λ depends on the choice of polarization
components and on the modes associated with λ. Further
details of the dependency on LA, TA1 and TA2 modes are
given in the next section. Nr and Np are defined analogously
to Mr and Mp as in equation (19):

Nr = 〈χas; nq,λ ± 1| (ei q·re − ei q·rh
) |χs; nq,λ〉,

Np = 〈χs; nq,λ ± 1| (ei q·re − ei q·rh
) |χs; nq,λ〉

− 〈χas; nq,λ ± 1| (ei q·re − ei q·rh
) |χas; nq,λ〉.

4
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Unlike Mr or Mp , each of Nr , Np vanishes as q → 0 due to
the exact cancellation of electron and hole form factors, as the
piezoelectric coupling constant is the same for electrons and
holes.

We consider the Hamiltonian Ĥ ph
F in equation (16) to

be associated with phonon-assisted interactions by which the
interdot tunnelling amplitude F becomes dressed by a Franck–
Cordon (FC) factor as described in [25]. A brief study of the
temperature dependence of F is given in section 7.1 where we
show that in materials of weak exciton–phonon interactions,
the FC factor can be neglected at low temperatures (T ∼ 10–
50 K).

5. Evaluation of matrix elements

By using equations (1), (3), (4) and (5) in equation (18) we
obtain explicit forms for the matrix elements:

〈L; nq,λ ± 1|Ĥ DP
ex−qb|L; nq,λ〉 = �D(q‖, qz) e−iq·Ra (20)

〈L; nq,λ ± 1|Ĥ DP
ex−qb|R; nq,λ〉 = �D(q‖, qz)e

−iq· (Ra +Rb )
2 e

− W 2

4L R
2 ,

(21)
where

�D(q‖, qz) =
√

h̄ |q|2
2ρ V ωq,λ

e− 1
4 L R

2q‖2

×
[

Dc e− 1
4 �ze

2q2
z e− 1

4 �e
2q2

‖ − Dve− 1
4 �zh

2q2
z e− 1

4 �h
2q2

‖
]
, (22)

where L R = �e�h/�r . An expression similar to equation (20)
can be obtained for 〈R; nq,λ±1|Ĥ DP

ex−qb|R; nq,λ〉. The function
�D(q‖, qz) differs from the commonly used form [16] as here
we consider non-isotropic propagation of phonons. From
equations (8), (20) and (21) we obtain

〈χas; nq,λ ± 1|Ĥ DP
ex−qb|χs; nq,λ〉

= 1

2
sin

β

2

(
e−iq·Ra − e−iq·Rb

)
�D(q‖, qz)

− cos
β

2
e
− W 2

4L R
2 �D(q‖, qz). (23)

The first term on the right-hand side contains the coherence
factor (e−iq·Ra − e−iq·Rb) which remains effective over large
distances between the quantum dots. The second term contains

the factor e
− W 2

4L R
2 which is short ranged as it depends on the

overlap integral of the exciton wavefunctions in quantum dots
located at different sites. By integrating the coherence factor
over the polar angle φ we obtain
∣∣∣〈χas; nq,λ ± 1|Ĥ DP

ex−qb|χs; nq,λ〉
∣∣∣
2 = 2π�2

D(q‖, qz)

×
[

1
2 sin2 β (1 − J0(q‖W ))+ cos2 β e

− W 2

2L R
2

]
, (24)

where J0 denotes a Bessel function of order zero. In order
to obtain a tractable form of equation (24) we approximate
J0(qW sin θ) by taking the angular average (as explained
in [24]):

J0(qW sin θ) ≈
∫ ∫

J0(qW sin θ) sin θ dθ dφ∫ ∫
sin θ dθ dφ

= sin(qW )

qW
.

Hence for large separations W between the quantum dots,
we may approximate the matrix element in equation (24) as
follows:

|〈χas; nq,λ ± 1|Ĥ DP
ex−qb|χs; nq,λ〉|2

≈ π�2
D(q‖, qz) sin2 β

(
1 − sin qW

qW

)
.

Expressions similar to equation (24) but with slight variations
in the dependency on the polar angle β can be obtained
for |〈χas; nq,λ ± 1|Ĥ DP

ex−qb|χas; nq,λ〉|2 and also |〈χs; nq,λ ±
1|Ĥ DP

ex−qb|χs; nq,λ〉|2. These expressions are used in the
following section, together with equation (19), to evaluate the
rates at which the excitonic qubits lose their decoherence via
relaxation and dephasing.

For the case of the qubit–phonon interaction via
piezoelectric coupling, we choose phonon polarization
components with respect to the cubic crystallographic axes of
the zinc-blende type crystal. By substituting equations (1), (3),
(4) and (5) into equation (19), we obtain the following explicit
forms for the matrix elements:

〈L; nq,λ ± 1|Ĥ Piez
ex−qb,λ|L; nq,λ〉 = �P (q‖, qz, λ) e−q‖·Ra

〈L; nq,λ ± 1|Ĥ Piez
ex−qb,λ|R; nq,λ〉

= �P(q‖, qz, λ) e−q‖· (Ra +Rb )
2 e

− W 2

4L R
2 ,

(25)

where

�P (q‖, qz, λ)

= 4πee14

ε0εr

√
h̄

2ρ V υλq
Aλ(θ, φ) e− 1

4 L R
2q‖2

×
[
e− 1

4 �ze
2q2

z e− 1
4 �e

2q2‖ − e− 1
4 �zh

2q2
z e− 1

4 �h
2q2‖

]
. (26)

The anisotropy factor Aλ(θ, φ) is given [16] by the
expressions:

ALA(θ, φ) = 3
4 sin 2θ sin θ sin 2φ, (27)

ATA1(θ, φ) = 1
8 (sin θ − sin 3θ) sin 2φ, (28)

ATA2(θ, φ) = 1
2 sin 2θ cos 2φ. (29)

The TA1 and TA2 modes correspond to the two possible
polarized directions of the transverse phonon. Calculation of
|〈χas; nq,λ ± 1|Ĥ Piez

ex−qb,λ|χs; nq,λ〉|2, where λ = LA,TA1,TA2,
is more involved due to the presence of the angle φ in
equations (27)–(29). For λ = LA we obtain

|〈χas; nq,LA±1|Ĥ Piez
ex−qb,LA|χs; nq,LA〉|2

= π

4
�2

P(q‖, qz,LA)

×
[

sin2 β

(
1 − sin qW

qW

)
+ 9 cos2 βe

− W 2

2L R
2

]
, (30)

where �P(q‖, qz,LA) is obtained using equations (26)
and (27). Similar expressions can be obtained for the TA1
and TA2 modes of the transverse phonon using equations (28)
and (29).
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6. Decoherence rates of excitonic qubits

We employ the Fermi Golden Rule to compute decoherence
rates, adhering to the conditions (discussed in chapter 18
of [26]) underlying the perturbation theory from which the
Golden Rule is derived. An essential condition is that the
interaction time T of the perturbation remain sufficiently long
to satisfy �E � 2π h̄

T , where �E is the energy range of
states involved in the transitions, in which the initial state
is not appreciably depleted during the transition period. At
low lattice temperatures, small Förster interaction energies
and weak exciton–phonon interactions, the decoherence rates
associated with relaxation and pure dephasing processes are
therefore calculated using

1

τX,λ

= 2π

h̄

∑

q‖,qz

∣∣〈f|Ĥint|i〉
∣∣2
(Nq,λ+1) δ(�E ± h̄ωq,λ), (31)

where the initial and final states |i〉 and |f〉 are constructed from
|χas; nq,λ〉 and |χs; nq,λ〉. �E is the energy difference between
the initial and final states and determines the wavevector of
the emitted phonon. The interaction Hamiltonian Ĥint is equal
to either Ĥ DP

ex−qb or Ĥ Piez
ex−qb,λ depending on the type of phonon

coupling. In the case of decoherence associated with Förster
transfer, Ĥint is given by Ĥ ph

F , details of which appear in the
next section. Nq,λ denotes the thermalized average number of
phonons at temperature T and is given by the Bose–Einstein
distribution Nq,λ = [exp(h̄ωq,λ/kBT ) − 1]−1 where kB is the
Boltzmann constant.

From equations (19), (24), (31) we obtain explicit
expressions for the rate of relaxation (1/τ r

DP
) and for the rate

of dephasing (1/τ p
DP

) of excitonic qubits:

1

τ r(p)
DP

= (Dc − Dv)
2q3

4
√
π h̄ρυ2

LA

exp

(
−3

4
q2�2

)

× Erfi(��)

��
(Nq,λ + 1)Sr(p)(β), (32)

where the functions Sr and Sp are given by

Sr (β) = 1

2
sin2 β

(
1 − sin qW

qW

)
+ cos2 βe− W 2

�2 ,

Sp(β) = 1

2
cos2 β

(
1 − sin qW

qW

)
+ 1

2
sin2 βe− W 2

�2 .

In order to simplify equation (32) and its derivation, we have
assumed that �e ≈ �h = � and �ze ≈ �zh = �z . Erfi denotes

the imaginary error function, �� = q
√

1
2 (

3
2�

2 − �z
2) and

q = 2F(W )

h̄υLA

√
1 + γ 2 where γ = ��

2F(W )
(see equation (14) for

an analytical expression for F(W )). The tuning factor γ is the
ratio of the level asymmetry or bias (��) to the tunnelling
amplitude given by 2F(w), where the level asymmetry is
determined by the difference in exciton creation energies at
the separate quantum dots. Thus γ can be controlled in
two ways, first by changing the bias and second by changing
F(W ). In Förster coupled systems, it is convenient to alter
γ via bias pulsing techniques [20]. It is to be noted that the
cutoff frequency in equation (32) occurs at ω� ∼ υLA/� which

Figure 1. Relaxation time τ r
DP

(dashed) and dephasing time τ p
DP

(full)
as functions of (a) γ = ��

2F(W)
at T = 10 K, W = 5 nm,

�e ≈ �h = � = 2 nm and �ze ≈ �zh = �z = 1.5 nm, (b) dot size � at
γ = 1, W = 6 nm, �z = 0.5 nm and T = 10 K. (c) Relaxation time
τ r

DP
as a function of interdot distance W at γ = 1.5 (dashed) and

γ = 0.5 (full) at � = 2 nm, �z = 1 nm and T = 10 K.

is approximately the inverse phonon flight time through the
quantum dot.

We use parameters relevant to the GaAs/AlGaAs material
system [21] to calculate the relaxation time τ r

DP
and dephasing

time τ p
DP

, which are shown as functions of γ in figure 1(a). For
small values of γ the qubit states are close to being maximally
entangled and decoherence is dominated by relaxation, as
one would expect for two equally populated states. As γ
increases, the difference in populations of the qubit states is
enhanced and decoherence becomes increasingly dominated
by a pure dephasing process. The minimum relaxation time
τ r

m
is attained at γm and is given by τ r

m
≈ W/2πυLA ,

thus satisfying the condition in which the interdot separation
matches the phonon wavevector, as discussed by Zanardi
et al [27]. Figure 1(a) shows that equation (31) provides
reliable qualitative predictions for Förster coupled excitonic
qubits at small interdot tunnelling energies. These decoherence
times will be compared with those estimated using Markovian
Bloch–Redfield theory in section 7.
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Figure 1(b) shows that for γ = 1, relaxation and
dephasing times differ as the quantum dot size � is increased
beyond 2 nm. Figure 1(c) shows that at certain values of
W , depending on γ and �, relaxation times can reach very
small values, of the order of several picoseconds. Hence the
relaxation rate has a non-monotonic dependence on the interdot
distance W for a wide range of γ values.

For the case of qubit–phonon interaction via piezoelectric
coupling, we obtain relaxation and dephasing rates for λ = LA
using equations (20), (30), (31):

1

τ r(p)
Piez

= π2qe2e2
14

2ε2h̄ρυ2
LA

exp(−q2�2/2)

× [1 − exp(− 1
4 (r

2 − 1)q2�2)]2

× GLA

(
q2�2r 2

2
(
r 2 + 1

)
)
(Nq,λ + 1)S′

r(p)(β), (33)

where r = �h/�e and where we have assumed � = �e = �ze,
which enables us to obtain the analytical expression shown.
The function GLA has the expression

GLA(x) = 2x + 15

4x3
−

√
πe−x(4x(x + 3)+ 15)Erfi

(√
x
)

8x7/2
,

(34)
and S′

r and S′
p are given by

S′
r (β) = sin2 β

(
1 − sin qW

qW

)
+ 9 cos2 β e− W 2

�2 ,

S′
p(β) = cos2 β

(
1 − sin qW

qW

)
+ 9

2
sin2 β e− W 2

�2 .

Expressions similar to equation (33) but with terms GTA1(x)
and GTA2(x) associated with TA1 and TA2 modes are given by

GTA1(x) = 3

2x2
−

√
πe−x (2x + 3)Erfi

(√
x
)

4x5/2
,

GTA2(x) =
√
πe−x(x(x(2x + 5)+ 12)+ 15)Erfi

(√
x
)

6x7/2

− x(x + 2)+ 15

3x3
.

Equation (33) shows that 1/τ r(p)
Piez

= 0 when �h = �e (for
which r = 1) due to the piezoelectric coupling being a polar
mechanism.

Figure 2(a) shows that dephasing due to qubits interacting
with phonons via piezoelectric coupling is dominant at large
values of γ (�2.5) while relaxation dominates at small values
of γ . These features are similar to those obtained for
phonon coupling via the deformation potential. The results
shown in figures 2(a) and (b), as well as those obtained
for the deformation potential, highlight the critical role of γ
and quantum dot parameters in influencing the decoherence
properties of excitonic qubit systems. Therefore the quality
factor Q [13], which determines the number of charge
oscillations that can be resolved within the decoherence time,
can be selected using the quantum dot system configuration
based on parameters �, �z , r , W and T . Phonon-assisted
decoherence can therefore be suppressed by careful choice
of system parameters leading to higher fidelity of logic gate
operations.

Figure 2. (a) Relaxation time τ r
Piez

(dashed) and dephasing time τ p
Piez

(full) as functions of γ at W = 5 nm, �e = �ze = 2 nm,
r = �h/�e = 5 and T = 10 K. (b) Relaxation time τ r

Piez
as a function

of interdot distance W at γ = 1.5 (dashed) and γ = 0.5 (full) at
�e = �ze = 2 nm, r = 5 and T = 10 K.

7. Decoherence times using Markovian
Bloch–Redfield theory

In this section we verify some of the results obtained in
earlier sections by comparison with results of the Markovian
Bloch–Redfield theory [19, 20]. For the weak damping of
the qubit system and low temperature conditions considered
here, the Born approximation [19, 20] becomes valid. We
assume a large phonon reservoir so that the characteristic time
of correlation between phonons and qubit states is less than
the relaxation time of the system. This condition ensures that
the system obeys the Markovian process of evolution. The
Bloch–Redfield theory describes the dynamics of the two-level
qubit Hamiltonian in terms of two rates: the relaxation rate
and the decoherence rate [19, 20]. The pure dephasing rate
is then obtained from these two rates. Analytical expressions
for the decoherence (τ p

X,R
) and relaxation rates (τ r

X,R
) are given

by [19, 20]

1

τ r
X,R

= π

2

F2

��2 + (2F)2
JX(2F) coth

(
F

2kBT

)
,

1

τ p
X,R

= 2π
��2

��2 + (2F)2
GX(ω → 0),

(35)

where X = DP or Piez and the Förster tunnelling amplitude F
depends on the interdot distance W as given in equation (14).
We have GX(ω) = JX(ω) coth( h̄ω

2kBT ) and JX(ω) is the
following spectral density function which yields information

7
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Figure 3. (a) Relaxation time τ r
DP,R

(dashed) and dephasing time τ p
DP,R

(full) as functions of γ = ��

2F(W)
at T = 10 K, W = 5 nm,

�e ≈ �h = � = 2 nm and �ze ≈ �zh = �z = 1.5 nm. (b) Relaxation
time τ r

Piez,R
(dashed) and dephasing time τ p

Piez,R
(full) as functions of γ

at T = 10 K, W = 5 nm, �e ≈ �ze = 2 nm and r = �h/�e = 5.

about the interaction of the quantum dot with phonons:

JDP(ω) =
∑

q

�D(q‖, qz)
2δ(ω − ωq)

JPiez(ω, λ) =
∑

q

�P (q‖, qz, λ)
2δ(ω − ωq),

(36)

where �D(q‖, qz) and �P(q‖, qz,LA) are given in equa-
tions (22) and (26) respectively. At small ω, J (ω) ∼ ωk where
the exponent k distinguishes the cases of ohmic (k = 1), sub-
(k < 1) and super-ohmic (k > 1) couplings [24]. JD(ω) and
JP(ω,LA) can be determined [25] using equations (24), (30)
in super-ohmic forms where k = 3, 5 for JD(ω), JP (ω,LA)
respectively.

Comparison of figures 3(a), and 1(a) shows that there
is reasonable agreement (within an order of magnitude) of
the decoherence times obtained using the Fermi Golden
Rule and Markovian Bloch–Redfield theory for excitonic
qubits interacting with acoustic phonons via the deformation
potential. However we note some differences when qualitative
comparisons are made especially at 0.5 � γ � 1. These
differences arise mainly from the restricted range of phonon
frequencies involved due to the energy conservation condition
of the Fermi Golden Rule formula. The energy difference
between the symmetric and antisymmetric eigenstates is
small, thus only low energy phonons are involved in energy
conservation. This elimination process is useful in situations
where the phonon bath does not have a smooth frequency
distribution and for which the Markovian Bloch–Redfield
theory may fail as explained in [19].

Figure 4. Renormalized tunnelling fraction Fr
F as function of

temperature at γ = 1.5 (full) and γ = 1 (dashed), W = 6 nm,
�e ≈ �h = � = 2 nm and �ze ≈ �zh = �z = 1 nm for the case of the
deformation potential mechanism.

The Förster interaction energies are weak (≈0.4 meV)
at typical interdot separations of ≈50 Å considered here
and we expect the Fermi Golden Rule to provide reliable
estimates of decoherence times for a wide range of
parameters (γ, �e, lh, lze). The Golden Rule employed here
therefore provides a viable alternative to numerically intensive
schemes [28] as equations (32) and (33) are analytically
tractable and require minimum computational effort. However
we have excluded very small γ values (�0.25) from
consideration in our work as the Fermi Golden Rule contains
approximations [29] that exclude vital quantum characteristics
present at high interdot tunnelling amplitudes F . At such
amplitudes, F becomes comparable to the cutoff frequency
(see equation (32)) which occurs at ω� ∼ υLA/�. For the
GaAs/AlGaAs material system [21] typically ω� ∼ 5 meV
and we expect Markovian theories to fail at very low γ values.
The resulting dynamics of qubit–phonon interactions will then
need to be modelled using non-Markovian methods [30] which
include phonon reservoir memory effects.

Comparing figures 3(b) and 2(a), we note that the Fermi
Golden Rule also yields the correct order of magnitude for
relaxation and pure dephasing times for qubits interacting with
acoustic phonons via piezoelectric coupling. The qualitative
deviations are however more marked in this case possibly due
to the nature of the spectral density function associated with
the piezoelectric mechanism.

7.1. Renormalized tunnelling amplitude Fr

Due to phonon interactions the interdot tunnelling amplitude
F (see equation (14)) gets dressed by a Franck–Cordon (FC)
factor and the renormalized amplitude Fr is modified [25]
according to

Fr = F exp

[
−

∫ ∞

0

JX(ω)

ω2
coth

(
h̄ω

2kBT

)
dω

]
.

The argument of the exponential term in Fr, the FC factor [25],
is computed using the spectral density functions given in
equation (36). For the GaAs/AlGaAs material system [21], the
renormalized tunnelling amplitude Fr (plotted in figure 4) is
only marginally affected in the low temperature range (T �
50 K) which we have considered in our work. This justifies
the exclusion of the FC factor in estimating decoherence
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times in section 6. It is important to note that the degree
of renormalization of the interdot tunnelling amplitude F
increases as γ is increased.

8. Conclusions

We have studied phonon-assisted mechanisms that contribute
to the decoherence of excitonic qubits in quantum dot systems
coupled by Förster-type transfer. We have obtained explicit
expressions for the relaxation and dephasing times of excitonic
qubits interacting with acoustic phonons that are valid at small
interdot tunnelling energies. Our results highlight the critical
role of the bias in influencing the decoherence properties
of excitonic qubit systems. For instance, increasing the
tuning factor γ has opposite effects on the relaxation and
dephasing times for excitonic qubits. Numerical estimates
of decoherence times using Markovian Bloch–Redfield theory
agree within an order of magnitude with times obtained using
the Fermi Golden Rule in GaAs/AlGaAs quantum dot systems
for γ � 0.5. The Fermi Golden Rule therefore provides a
viable alternative to numerically intensive schemes at interdot
tunnelling amplitudes small enough for Markovian theories to
be valid. We note that generic features of decoherence of
excitonic qubits are essentially the same for phonons which
interact via both the deformation potential and piezoelectric
coupling.
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